Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Travel Med Infect Dis ; 49: 102402, 2022.
Article in English | MEDLINE | ID: covidwho-1926943

ABSTRACT

Monkeypox is a zoonotic disease with clinical manifestations similar to smallpox in humans. Since May 13, 2022, an increasing number of suspected and confirmed cases have been reported, affecting non-endemic regions across the globe. More strikingly, reports from the current outbreak reveal unique aspects regarding transmission dynamics and an unprecedented, rapidly expanding and sustained community transmission. As demonstrated through the still-ongoing COVID-19 pandemic, genomic surveillance has been an essential resource for monitoring and tracking the evolution of pathogens of public health relevance. Herein, we performed a phylogenomic analysis of available Monkeypox virus (MPXV) genomes to determine their evolution and diversity. Our analysis revealed that all MPXV genomes grouped into three monophyletic clades: two previously characterized clades and a newly emerging clade harboring genomes from the ongoing 2022 multi-country outbreak with 286 genomes comprising the hMPXV-1A clade and the newly classified lineages: A.1 (n = 6), A.1.1 (n = 1), A.2 (n = 3) and B.1 (n = 262), where lineage B.1 includes all MPXV genomes from the 2022 outbreak. Finally, it was estimated that B.1 lineage of this clade emerged in Europe on 03/02/2022 [95%CI = 11/13/2021 to 05/10/2022]. The exceptional surge of cases and the broader geographical expansion suggest multifactorial factors as drivers of the current outbreak dynamics. Such factors may include the cessation of smallpox vaccination and its potential spread across particular networks. Integrating pertinent epidemiological information with genomic surveillance information will help generate real-time data to help implement adequate preventive and control measures by optimizing public health decisions to mitigate this outbreak.


Subject(s)
COVID-19 , Smallpox , Disease Outbreaks , Humans , Monkeypox virus/genetics , Pandemics , Phylogeny
3.
Viruses ; 14(6)2022 06 07.
Article in English | MEDLINE | ID: covidwho-1884385

ABSTRACT

Genomic surveillance of SARS-CoV-2 is one of the tools that provide genomic information on circulating variants. Given the recent emergence of the Omicron (B.1.1.529) variant, this tool has provided data about this lineage's genomic and epidemiological characteristics. However, in South America, this variant's arrival and genomic diversity are scarcely known. Therefore, this study determined the genomic diversity and phylogenetic relationships of 21,615 Omicron genomes available in public databases. We found that in South America, BA.1 (n = 15,449, 71%) and BA.1.1 (n = 6257, 29%) are the dominant sublineages, with several mutations that favor transmission and antibody evasion. In addition, these lineages showed cryptic transmission arriving on the continent in late September 2021. This event may have contributed to the dispersal of Omicron sublineages and the acquisition of new mutations. Considering the genomic and epidemiological characteristics of these lineages, especially those with a high number of mutations in their genome, it is important to conduct studies and surveillance on the dynamics of these lineages to identify the mechanisms of mutation acquisition and their impact on public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics , South America/epidemiology
4.
J Med Virol ; 94(8): 3988-3991, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802455

ABSTRACT

We assessed the circulation of severe acute respiratory syndrome coronavirus-2 variants amongst vaccinated military personnel in Bogotá, Colombia to evaluate the mutations of certain variants and their potential for breakthrough infection in vaccinated subjects. We observed that in vaccinated individuals the most frequent infecting lineage was Mu (B.1.621 and B.1.621.1). The above is possibly associated with specific mutations that confer it with vaccine-induced immune escape ability. Our findings highlight the importance of how genomic tracking coupled with epidemiological surveillance can assist in the study of novel emerging variants (e.g., Omicron) and their impact on vaccination efforts worldwide.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Colombia/epidemiology , Genomics , Humans , SARS-CoV-2/genetics
5.
Front Med (Lausanne) ; 9: 863911, 2022.
Article in English | MEDLINE | ID: covidwho-1793007

ABSTRACT

Background: The third wave of the global health crisis attributed to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus reached Colombia in March 2021. Over the following 6 months, it was interpolated by manifestations of popular disapproval to the actual political regime-with multiple protests sprouting throughout the country. Large social gatherings seeded novel coronavirus disease 2019 (COVID-19) variants in big cities and propagated their facile spread, leading to increased rates of hospitalizations and deaths. Methods: In this article, we evaluate the effective reproduction number (Rt) dynamics of SARS-CoV-2 in Cali, Colombia, between 4 April 2021 and 31 July 2021 based on the analysis of 228 genomes. Results: Our results showed clear contrast in Rt values between the period of frequent protests (Rt > 1), and the preceding and following months (Rt < 1). Genomic analyses revealed 16 circulating SARS-CoV-2 lineages during the initial period-including variants of concern (VOCs) (Alpha, Gamma, and Delta) and variants of interest (VOIs) (Lambda and Mu). Furthermore, we noticed the Mu variant dominating the COVID-19 distribution schema as the months progressed. We identified four principal clusters through phylogenomic analyses-each one of potentially independent introduction to the city. Two of these were associated with the Mu variant, one associated with the Gamma variant, and one with the Lambda variant. Conclusion: Our results chronicle the impact of large group assemblies on the epidemiology of COVID-19 during this intersection of political turmoil and sanitary crisis in Cali, Colombia. We emphasize upon the effects of limited biosecurity strategies (which had characterized this time period), on the spread of highly virulent strains throughout Cali and greater Colombia.

SELECTION OF CITATIONS
SEARCH DETAIL